Rigorous Hierarchical
Requirements Analysis for
Critical System Design

: C:)Iin Snook

Asieh Salehi Fathabadi, Dana Dghaym

Thai Son Hoang, Michael Butler

University of Southampton

Introduction: STPA and Event-B

e STPA — Systems Theoretic Process Analysis

* Analyses system behaviour to identify potential safety hazards

* STPA-sec - adapts STPA to identify potential security threats
* Methodical but lacks rigor — relies on human judgement
* no abstraction - Only deals with one (concrete) level

* Event-B formal modelling
« Validation by animation (scenario checker)
» Verification by proof (invariant safety and security properties)
e Rigorous but not methodical — relies on human expertise about modelling choices
* Abstraction - Refinement - can be used to deal with complexity

e Combine STPA and Event-B

* Synergy - methodical analysis with rigorous verification
* Hierarchical — use refinement to analyse a hierarchy of sub-components

Hierarchical flow down of requirements to components

Case study: Tokeneer - secure enclave system

E Tokeneer System level
£
& Allow (only) authorised users
a accesstothe enclave.
|

! v
g Enclave Secure Door Component
g [Dooropens (only)for
a authorised users)
= v l
E Door Component Secure Lock Component Alarm Component
< Doorcanopen only when its Notify if door locked but left
E g unlocked. open fora certain time.

Secure Card Component

Fingerprint Component

Hierarchical component failures

F1: Unauthorised user inside F2: Authorised user prevented
enclave from entering enclave

ystemlevel

Q

g FD1: Door is open for FD2: Door will not open for
§ unauthorised user authorised user

(a]

Steps of the analysis process

E.g. Tokeneer: system level analysis

 Step 1: State the system purpose. Identify system level failures.

System level

Purpose: Allow (only) authorised users access to the enclave.
Actions: Users can enter and leave enclave.

Failures:

e F1: Unauthorised user inside enclave

o F2: Authorised user prevented from entering enclave

* Step 2:
|dentify the control actions

authorise/revoke o .
Authority . Authorisation !

Control action structure diagram

— (equivalent to control action diagrams
normally used in STPA but more abstract)

Enclave

%{ [authorised]

First step towards an Event-B model

leave

R i A ! - S —> Input
E CODomam l Biyzical ——————— [Condition]/Action
oo s & ????T | Component | (__ 7 | e » [Condition]

* Step 3:

b C4£. AUUIVUIISEU USEI prevelilteu 1Hulll erieniny einviave

System Action

Perform control action

Not Occurring
Causes Failure

Occurring
Causes Failure

Wrong Timing or Order
Causes Failure

analysis to identify

conditions under which

User Enter Enclave | A11: Authorised user | A12: Unauthorised user | N/A
prevented from enters enclave (F17)
entering enclave (F2)

User Leave Enclave | No failure No failure N/A

failures may occur.

* Step 4.
Construct formal model:

* system properties as invariants.

©@invl: inEnclave C authorisedUser

e events represent system actions
* (in this case user actions)

event userEnterEnclave
any user
where
@grdl: user ¢ inEnclave
©@grd2: user € authorisedUseru)
then
©@actl: inEnclave := inEnclave U {user}
end

nt userLeaveEnclave
any user
where
@grdl: user € inEnclave
then
@actl: inEnclave := inEnclave \ {user}
end

* Step 5:
Validate the model by animation using scenarios.
» Useful for checking model behaves as expected/desired,

* checking liveness properties, (e.g. authorised users can enter enclave)
* Improve our understanding of the system

* Step 6:
Use automated theorem proving and model checking tools to verify invariant and
refinement properties.

e Useful for debugging the model,

* checking static properties, (e.g. no unauthorised users are in the enclave)
* Improve our understanding of the system

e Step 7: Adjust STPA analysis and models for improved understanding.
* iteratively

Verification by automated theorem proving (step 6

* Proof Tree (L Proof Infor 8 = O @ *mO_sys X = B E Event-B Explorer & = 8
Unproven POs help us to i i BB E 8
userEnterEnclave/invl/INV userEnterEnclave/invl/INV » ‘ &
1 1 1 . E in mo o» ‘ |9
find errors in the modelling: * Event in mo_sys | ew O] > @ c4_card
userEnterEnclave : ct inEnclaveeP (authorisedUser) > G c4_card_prob
Ay ct - asieh_auth=son_unauth » @ c4_card_temp
user B)) > (@ c5_fingerPrint
WHERE ct ~ asieh_auth=colin_auth > 005 fingerPrint_prob
e.g- grdl: user ¢ inEnclave ot — colin_auth=son_unauth v @ mO_sys
. . THEN s : > @ Variables
. USER={asieh auth,colin auth,dana unauth,son
INV: Invariant preservation PO B gam o omm ct : I I] o itidaned
{user} ct — asieh_auth=dana_unauth > . Events
missing event gua rds: END ct - colin auth=dana unauth v @ Proof Obligations
Invariant in mO sys - AN A ATION /in NV
. . . . - dana_unauth=son_unauth ” .
@grdz: user Eauthorlseduser invl: inEnclave e P(authorisedUser) ct - - ‘A userEnterEnclave/inv1/IN
ct T~ usereinEnclave userLeaveEnclave/inv1/INV
» @ m1_door
» @ m1_door.vO
> @ m2_lock

Sometimes unproven POs help us > @ m2_lock VO

. . . = O » @ m3_alarm
discover things we missed... > @ ma_card
.. understand the system = & ¥ Symbols Ef SearchHypo X = O
| ppv "%y b0 p1 mi @ @ || 8

@ | B« 0|

* Step 8:
Consider how to mitigate the potential problems with control actions that have been
identified in step 3.

* Mitigations include
e dismissive arguments,
o further verification or

o design of the next level components (derived requirements).

— E.g. Identify sub-components to be analysed in the next level

- WS EmmS AV W b=l IWICA Y W | "YW TnALIwAL W] "YW AL MAL W | v

* REPEAT steps 1-8 on any sub-components
 E.g.door

Door component analysis

Door Component

Purpose: Door opens (only) for authorised users.
Actions: Users can open and close doors.

Failures:

o FD1: Door is open for unauthorised user (causes F17)
° FD2: Door will not open for authorised user (causes F2)

System Action Not Occurring

Causes Failure

Occurring
Causes Failure

Wrong Timing or Order
Causes Failure

User Open Door AD11: Authorised user is

unable to open the door

AD12: Unauthorised
user opens the door

N/A

(FD2). (FD1)
User Close Door AD21: User does not No failure AD23: Authorised user
close the door (FD1) closes door before
entering (FD2)
User Approach Door | No failure No failure No failure
User Leave Door No failure No failure No failure

steps 1-3 & 8

authorised users
will not leave the
door areawhile the

Secure door is open
Door
X 7y 7y 3 unauthorised users
3 will not enterin the
- 'S + \ /o‘ S5E presence of
o 3 8| sl o) P authorised users
Ql o = 8 | Q) 5
el ofl & = W7
© N e
\lx’/
Qser enter Enclave
leave
EEEesEs : e — — |nput
i ! Physical ———————» [Condition]/Action
A Component | Q@i DT || - » [Condition]

Refine the system model into a door model (step 4)

System level purpose: Allow (only) authorised users access to the enclave.
Door component purpose: Door opens (only) for authorised users.

* The system & door purposes are
modelled as invariants and event
guards

* Invariants and guards are refined to
specify the derived requirements

* New events are added to open/close
door (not shown)

machine m@_sys
sees c@_prob
variables
inEnclave
invariants
@invl:| inEnclave ¢ P(authorisedUser)
events
event INITIALISATION
begin
@actl: inEnclave = @
end

event userEnterEnclave
any
user
where
@grdl: user ¢ inEnclave
@grle user e authorisedUser I
begin
@actl: inEnclave = inEnclave u {user}
end

event userlLeaveEnclave
any

user
where

@grdl: user e inEnclave
begin

@actl: inEnclave = inEnclave \ {user}
end

end

machine ml_door_v@
refines m@_sys
sees cl_door_prob
variables
inEnclave
atDoor
doorState
invariants
@invl: atDoor e P(USER)
@inv2: atDoor n inEnclave = @
@inv3:gdag s AIRAR A
e
events
event INITIALISATION extends INITIALISATION
begin
@act3: atDoor = @
@act4: doorState = closed
end

event userEnterEnclave refines userEnterEnclave

any
user
where
@grdl: user e atDoor
@grdZI doorState = open I
begin

@actl: inEnclave = inEnclave u {user}
@act2: atDoor = atDoor \ {user}
end

event userLeaveEnclave refines userlLeaveEnclave
any
user
where
@grdl: user e inEnclave
Bgrd2: doorState = open
begin
@actl: inEnclave = inEnclave \ {user}

Validating door component using scenario checker (step 5)

The presence of an
unauthorised user by the
door prevents the
authorised user from
opening the door to leave
the enclave

-E Tokeneer_m1_door vO (m1_door_vO.bum - EventB) &3

[History 22

m1_door v0

mO_sys

] *Scenario Checker Control 23

userApproachDoor [asieh_auth]
userApproachDoor [dana_unauth]
userLeaveDoor [son_unauth]

Recording
Restart
Save
Big Step
Sml Step

Run For 5

Leave enclave is
not enabled

Authorised Users In Enclave At Door \
asieh_auth colin_auth son_unauth)
colin_auth

Edit |Run

userApproachDoor(son_unauth)
userCloseDoor(colin_auth)
userEnterEnclave(colin_auth)
userOpenDoor(colin_auth)
userApproachDoor(colin_auth)
INITIALISATION
SETUP_CONTEXT

(uninitialised state)

[State &2

Name
vcO

Scenario Checker State

userEnterEnclave

INITIALISATION

Previous value

authorisedUser {asieh_auth,colin_auth} {asieh_auth,colin_auth}

¥mO_sys
inEnclave
¥+ m1_door_vO0
atDoor
doorState
¥Formulas
»sets
> invariants
»axioms

»event guards

{colin_auth}

{son_unauth}

{colin_auth}

12

@
closed

Revised door model (Step 7)

e After scenario checking we
realised that an unauthorised
user can prevent users leaving
the enclave.

* Relax the security constraint...
the door can be open as long as
an authorised user is present.

* Assumption: the presence of
authorised users will deter
unauthorised ones from entering
the enclave

Original model

machine ml_door_v@
refines m@_sys
sees cl_door_prob
variables
inEnclave
atDoor
doorState
invariants
@invl: atDoor e P(USER)
@inv2: atDoor n inkEnclave = @
@inv3: doorState e DOOR_STATES
@inv4:|doorState = open = atDoor ¢© authorisedUserI
events
event INITIALISATION extends INITIALISATION
begin
@act3: atDoor = 2
Bact4: doorState = closed
end

even¢ userknterEnclave » es userknterEnclave

any m\
user

where
@grdl: user e atDoor
@grd2: doorState = open

begin
®actl: inEnclave = inEnclave u {user}
@act2: atDoor = atDoor \ {user}

end

event userlLeaveEnclave refines userlLeaveEnclave
any
user

Revised model

machine ml_door

refines md_sys

sees cl_door_prob

variables
inEnclave
atDoor
doorState

invariants
@invl: atDoor ¢ P(USER)
@inv2: atDoor n inEnclave = @
@inv3: STATES

Relaxed constraint

@inv4] doorState = open = inkEnclave = @ v (atDoor n authorisedUser) = o

events
event INITIALISATION extends INITIALISATION
begin
@act3: atDoor = @
@act4: doorState = closed
end

even! authUserEnterEnclave m fines userEnterEnclave

any
/////”/”:;er
where

@grdl: user e atDoor
Bgrd2: doorState = open
@grd3: user e authorisedUser
begin
@actl: inEnclave = inEnclave u {user}
@act2: atDoor = atDoor \ {user}
end
I
evenl unauthUserEnterEnclave refines userEnterEnclave
any
user
where
@grdl: user e atDoor
@grd2: doorState = open

@grd3: i r
@grd4:| atDoor n authorisedUser = @
@grdS:| inEnclave = @

begin

Assumption

@actl: inEnclave = inEnclave u {user}
@act2: atDoor = atDoor \ {user}

sadn

end

Thank you

Any guestions?

Tokeneer: Lock, Alarm, Card and Fingerprint component analysis

Lock Component

Alarm Component

Purpose: Door can open only when its unlocked.
Actions: Door can lock and unlock for users.

Purpose: Notify if door locked but left open for a certain time.
Actions: Alarm can start or clear.

Failures:
° FL1: Door is unlocked for an unauthorised user (causes FD1 and so F1)
° FL2: Door remains locked for an authorised user (causes FD2 and so F2)

Failures:

o FA1: Alarm off when door is left open for a certain time (leading to FD2 and so F1)

° FA2: Alarm on when door is closed or soon after door opened (this may lead to alarm
notifications being ignored, hence leading to FD2 and so F1)

System Action Not Occurring Occurring Wrong Timing or Order
Causes Failure Causes Failure Causes Failure

Unlock Door AL11: Door remains AL12: Door unlocks for N/A
locked for an authorised | an unauthorised user
user (FL2) (FL1)

Lock Door AL21: Door remains N/A AL23: Door locks before
unlocked for an user opens door (FL2)
unauthorised user (FL1)

Card Component

System Action Not Occurring Occurring Wrong Timing or Order
Causes Failure Causes Failure Causes Failure

Alarm Start AA11: Alarm does AA12: Alarm starts AA13a: Alarm started too
not start when door is | when door is closed late means that door is left
left open (FAT). (FA2) open without notification for

too long (FAT1).

AA13b: Alarm started too
quickly after door opened
(FA2)

Alarm Clear AA21: Alarm does N/A AA23a: Alarm cleared too
not stop after door is quickly means that door is
closed (FA2) left open without notification

(FAT).
AA23b: Alarm cleared too
late may (FA2)

Purpose: Door is unlocked only for users holding a valid card.
Actions: Card can be issued for a user.

Failures:
o FC1: Unauthorised user holds a card (causes FL1 and so FD1 and F1)
° FC2: Authorised user does not hold a card (causes FL2 and so FD3 and F2)

Fingerprint Component

Purpose: Validate the card belongs to the user by matching fingerprint.
Actions: The fingerprint on the card is compared with the user’s fingerprint and if a match is found,
the card is valid.

Failures:
o FF1: Authorised user does not hold validated card (new failure leading to F7)
o FF2: Unauthorised user has validated card (causes FC7 and so FL1, FD1, F1)

System Action Not Occurring Occurring Wrong Timing or Order
Causes Failure Causes Failure Causes Failure
Issue Card AC11: Authorised AC12: Unauthorised N/A
user not issued a user is issued a card
card (FC2) (FC1)
Lose Card No failure AC22: Authorised N/A
user loses card (FC2)
Find Card No failure AC32: Unauthorised N/A
user finds card (FC1)

System Action Not Occurring Occurring Wrong Timing or Order
Causes Failure Causes Failure Causes Failure

Match Fingerprint AF11: Authorised AF12: Card is incorrectly | AF13: Card is validated
users card is not validated for an after the lock is unlocked
validated (FF1) unauthorised user (FF2)

Hierarchical STPA-Event-B overall process

system
requirements
(flat)

potential failures
derived component

structured
requirements
hierarchy

7

structured
failures
hierarchy

—

(sub-) system actions

derivedrequirements [y "

El

/A > o
4 "’/ \\ / vy
Pl voal _ b
1 STPA system . 1 abstract modelling |
| level analysis L ' modelling | ¥
M P U Y —! \ ,' l\:
\\“u i ll . ! ! i /::::::::::::‘, ::\
ey IR
L O e i § || Seeessmasmens ’ L
vl T acti VORI (S DRE——) |
AT pctonanalsis {1 Ll verifcation |
"\\\ Loy R i N e e e e 2. 9 of design
» "_/Z—:_Z_Z_:_Z_Z_Z_Z_’__&_Z_:_Z_Z_:_Z-Z_Z_:iZ I e ";':': ': ': ': ': :_l:_ ‘: ‘: ‘: ': ": ‘: :_ ‘: ': - : .
4 ";-. \“ '\'.-;/ e S A
[il .l .
.4+ STPAcomponent ! ' refinement modelling:
Vo : L (TTTTTTTTT : =
N level analysis o modeling | ik
i i TN r—-’: SorrzrrzIzzl > refined model
Hpesr R I e
L = - ¥
iy :_E_'(ft_'c_”_’_alrfl_y_s_'f_—: ¢\ verification v !
“\\ ---------- { c;p-e-aj(-fc;r-a]l-c;)m ponents/ r;fi_n_e_n;e_ n_t;) 1_ _________ y ,/'
Ty g |
4-.1 Consolidation of " Consolidation of |
analysis L modelling ™
E g /,' ") >~ | verified model

STPA-Event-B phase process for one component

1

1

| sub-system actions |
IR i » potential failures 1+ ~

1 1
(sub-) system . P E abstract model of
requirements U . S PSR —— . i design
a’- B 1) : ’,’—_: _________________ B
,’ﬁ/ % ' refined control i ! I"‘;-,/ X
y I 1 H ' structurediagram r-- |hl '
il 1 1 1 -
.. STPAcomponent | 111 refinement modelllng:
e . r7 {1V gremmmmee———a L -
=1 level analysis ! S RREEEEEEE o & -
D . S : . L __377200 modelling ¢ T —
abstract control b o : l R BT N ! terate ntil no | e
structure diagram [------- m=ackl controlanalysis measl------- ' : | ! i e ! vulnerabiliies
. . ! : i : s \ vulnera'bllltes i \
! \ 4 1 - :] g1 s TR a4 P
| pmmmmmmmmmmmaon L l : ' ¢ validation | : Frosssoosssdl
:] L : | e Lococos P > verification !
! i actionanalysis i+ H i e e : | evidence
i P S T ; : : -
| TTTmommmmmemeee ! ' 1 WL | . s
' /'I refined modelofdesign || : oo _>: FoRlcation " e > e :
N L/ A Sesmemmsmmnse / Iterate yhtil valid : evidenceinc.
ST ——— qmmmmm e 2 k. S o : externalfaults 5
| N
1 1
B e e T S e T i ol |
Input to thlis o o It __________ .
component level S \
1 / !
‘a1 Formulate E
. : derived ;
1
1 | . I
' internaltothis ! . requirements !
| component ! R T 4
i B I
L _____________ ;’ A 4
: derived component
output from this requirements
component

Outline of talk

e Event-B and STPA

* Hierarchical process

* Tokeneer system:
* Flow down requirements
e Hierarchical failures
» System level analysis
 Component level analysis

