UNIVERSITY OF

Southampton

Event-B Development of a
Smart Ballot Box

Dana Dghaym

HD-Sec Workshop, 16 September 2021

UNIVERSITY OF

Southampton
Outline

« Part 1 : Event-B development of a smart ballot box

— Case study: Smart Ballot Box
— Aims & Motivation
— Event-B System Model of a Smart Ballot Box (SBB)

« Part 2 : Event-B to SPARK-Ada

— Introduction to SPARK
— High-Level Transformation Patterns : SBB Example

— Transformation Issues

e Conclusions and Future Work

UNIVERSITY OF

Southampton

Case Study: Smart Ballot Box

« Key Function of SBB:

— Ensures only valid ballot
gapers are cast in ballot
oxes for later tabulation.

. Why the SBB?

— Security Properties:
Confidéntiality, integrity
and availability.

— Relatively Small Case Study

— Can be used as
Demonstrator

Galois and Free & Fair. The BESSPIN
Voting System (2019).

UNIVERSITY OF

Southampton

Motivation

Application of refinement-based formal modelling in
building a Correct-by-Construction secure system.

Refinement of the security properties of a system.

Overall Aim of case study:

— Show how the Smart Ballot Box can be correctly
implemented on capability hardware according to the
system-level security specification.

Develop a tool-supported approach to translate an Event-B
model to verified code.

UNIVERSITY OF

Southampton

SBB System Model: Refinement Strategy

0. Abstract level: Model an ideal voting system.

1. Model possible attackers' behavior by distinguishing
between different types of ballot papers.

2. Introduce time and invalidate ballots with expired
timestamps.

o Time can be the subject of more attacks.

3. Data refine the voter information by encrypting ballots.

4. Ensure the legitimacy of ballots through the Message
Authentication Code (IMAC).

UNIVERSITY OF

Southampton
SBB Model: Abstract Level

o Events: create_ballot, cast ballot, invalidate ballot

« Model an ideal voting system

— Each voter can have at most one legitimate ballot

ballots € VOTER + VOTE

— The cast ballots must be legitimate

cast € ballots

10

UNIVERSITY OF

Southampton
First Refinement: Ballot types

papers
legitimate_papers illegitimate_papers
valid_papers invalid_papers cast_papers spoiled_papers

« Possible attacks
— Attacker create ballot/duplicate valid ballot ..
e Model the main security properties of SBB

1. Accept all valid ballots

2. Reject invalid ballots

UNIVERSITY OF

Southampton
First Refinement: Availability Property

 Availability property: Ensure valid ballots are not
blocked from being cast.

 Availability property is captured by the guard of
the relevant events.

— Specify cast _paper as rigid event with paper as

rigid parameter . event [cast_paper] refines cast_ballot
*Rigid: the guard any [paper] where
@valid-paper: paper € valid_papers

cannot be strengthened

// actions for casting a ballot
end

Second Refinement: Time

& Availability

This theorem ensures
that a ballot paper is
considered valid only if:

— Paper time has not
expired

— Voter has not cast their
vote before

— The paper is not spoiled

— Issued by a legitimate
source

UNIVERSITY OF

Southampton

theorem @accept-valid-paper:

V paper - paper € valid_papers =

// paper not already expired
paper_time(paper) 2 current_time -
expiry_duration

// copy not already cast

A paper_voter(paper) &
paper_voter[cast_papers]

// copy not already spoiled

A (V sp * sp € spoiled_papers =
paper_voter(paper) # paper_voter(sp)
V paper_vote(paper) # paper_vote(sp)
V paper_time(paper) # paper_time(sp)
)
// paper is not illegitimate

A paper & illegitimate_papers

13

UNIVERSITY OF

Southampton

Third Refinement: Ballot Encryption

« Introduce encryption to
prevent SBB from accessing
the voter’s information.

— Apply data refinement to
replace and

with encrypted
ballot

theorem @accept-valid-paper:

V paper - paper € valid_papers =
paper_time(paper) = current_time -
expiry_duration

// copy not already cast

A paper_encrypted_ballot(paper) &
paper_encrypted_ballot[cast_papers]
// copy not already spoiled

A (Vsp - sp € spoiled_papers =
paper_encrypted_ballot(paper) #
paper_encrypted_ballot(sp) V
paper_time(paper) # paper_time(sp)
)

A paper € illegitimate_papers

14

UNIVERSITY OF

Southampton
Fourth Refinement: Ballot Authentication

« Introduce MAC to check the legitimacy of the source issuing
the ballot.

— We assume the attacker does not know the secret key;
therefore, it is crucial to ensure the secrecy of this key.

@mac-legitimate_papers: Vpaper - paper € legitimate_papers =
paper_mac(paper) = MACAIlgorithm(

paper_time(paper) — paper_encrypted_ballot(paper) » MACKey
)

 All proofs are automatically proved with the help of SMT-
Solver plugin

15

IIIIIIIIIIII

Part 2: Translating
Event-B to SPARK-
Ada

UNIVERSITY OF

Southampton

Introduction
e Whatis SPARK?

— A programming language based on a subset of the Ada
language,

— Targeted at functional specification and static verification.

— A set of development and verification tools for that language.

/ Ada Core
features language G L GLEL

[: constructs
\ the SPARK common to sl
GEELD o

.

VUbset

-
-

17
*AdaCore: Introduction to SPARK

From Event-B to SPARK

machine m
sees C
variables

invariants

events
event
INITIALISATION
then
@actl: ...
end
event evt
any
parameters
where
@grd1: ..
then
@actl: ...
end
end

context C
sets

constants
records
record T
A : Integer
B : Integer

axioms

end

UNIVERSITY OF

Southampton

package P
with SPARK Mode =>0On
is

Some_Global : G;

type T is record

A : Integer;

B : Integer 15
end record;
begin
function F(X :) oo 3
return .. end Proc;
end P;

package body P
with SPARK Mode =>0On

procedure Proc (X :in T) is

procedure Proc (X :in T)

with

Global => (Input => (..),
00),

Pre => ..,

Post => .. ;

end P;

18

UNIVERSITY OF

Southampton
Refinement towards Implementation

e Sets - arrays

— Data Refine a set to Total function from Integer range to the
set type

— Can introduce a counter variable to track the size of array

« Event-B records are more general than SPARK (Event-B records
supports optional and relational fields)

— Use only total functions

— Define a special null record element to reflect Event-B
optional possibility and it can be used for initialisations

19

UNIVERSITY OF

Southampton
High level Event-B Transformation

e Event-B Models Translation

— Each context = specification package using all extended context
packages

— Last Refined Machine - specification and body packages using all
context and extended contexts packages

« Machine Elements Translation

— Variables - Global variables, initialised according to the
INITTALISATION event actions

— Event / INITIALISATION - Procedures
— Event Guards - Pre-conditions
— Event Actions - Post-conditions

— Event Parameters - Procedure Parameters (Output, input, in out
depends on guards and actions)

20

UNIVERSITY OF

Southampton
Smart Ballot Example

procedure cast(paper : in barcode) with
Global => (Proof_In => (spoiled_arr,
curr_time, spoil_count),

In_Out => (cast_arr, cast_count)),

event cast_paper
refines cast_paper

any Pre => cast_count in 0 .. Max_Votes-1),
paper and then not already_ cast(paper)
where

@grd1: paper € BARCODE

Post => already_ cast(paper)
@grd2: cast_count €0 - = max_votes -1

and then cast_count = cast_count' old + 1);

then . .
@act1: cast_arr(cast_count):= paper procedure cast(paper : in barcode) is

@act2: cast_count := cast_count + 1 begin
end cast_arr(cast_count) := paper;

cast_count := cast_count + 1;
end cast;

22

UNIVERSITY OF

Southampton
Transformation Issues

« What do we prove at SPARK level?

— Not necessarily all system invariants need to be re-
proved in SPARK (already proved in Event-B)

— Need to prove Ada is a correct implementation of the
Event-B model

« Some invariants might be required (e.g., well
definedness)

23

UNIVERSITY OF

Southampton
Conclusions

e The SBB Event-B model

— Modelled different security properties: Availability,
confidentiality & integrity

— Showed how we applied a refinement-based approach to
model security properties

e Manual Transformation of Event-B Models to SPARK

o Identification of Translation Patterns

— Applied to SBB & Tokeneer

26

UNIVERSITY OF

Southampton
Future Work

« What additional assertions are needed at SPARK level
(invariants)

o Automatic Code Generation

— Define a SPARK EMF Metamodel using XSD schema
generated by GNAT

— Event-B EMF to SPARK EMF Transformation

27

IIIIIIIIIIII

Thank you
Questions?

