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« Part 1 : Event-B development of a smart ballot box

— Case study: Smart Ballot Box
— Aims & Motivation
— Event-B System Model of a Smart Ballot Box (SBB)

« Part 2 : Event-B to SPARK-Ada

— Introduction to SPARK
— High-Level Transformation Patterns : SBB Example

— Transformation Issues

e Conclusions and Future Work
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Case Study: Smart Ballot Box

« Key Function of SBB:

— Ensures only valid ballot
gapers are cast in ballot
oxes for later tabulation.

. Why the SBB?

— Security Properties:
Confidéntiality, integrity
and availability.

— Relatively Small Case Study

— Can be used as
Demonstrator

Galois and Free & Fair. The BESSPIN
Voting System (2019).
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Motivation

Application of refinement-based formal modelling in
building a Correct-by-Construction secure system.

Refinement of the security properties of a system.

Overall Aim of case study:

— Show how the Smart Ballot Box can be correctly
implemented on capability hardware according to the
system-level security specification.

Develop a tool-supported approach to translate an Event-B
model to verified code.
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SBB System Model: Refinement Strategy

0. Abstract level: Model an ideal voting system.

1. Model possible attackers' behavior by distinguishing
between different types of ballot papers.

2. Introduce time and invalidate ballots with expired
timestamps.

o Time can be the subject of more attacks.

3. Data refine the voter information by encrypting ballots.

4. Ensure the legitimacy of ballots through the Message
Authentication Code (IMAC).
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SBB Model: Abstract Level

o Events: create_ballot, cast ballot, invalidate ballot

« Model an ideal voting system

— Each voter can have at most one legitimate ballot

ballots € VOTER + VOTE

— The cast ballots must be legitimate

cast € ballots
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First Refinement: Ballot types

papers
legitimate_papers illegitimate_papers
valid_papers invalid_papers cast_papers spoiled_papers

« Possible attacks
— Attacker create ballot/duplicate valid ballot ..
e Model the main security properties of SBB

1. Accept all valid ballots

2. Reject invalid ballots
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First Refinement: Availability Property

 Availability property: Ensure valid ballots are not
blocked from being cast.

 Availability property is captured by the guard of
the relevant events.

— Specify cast _paper as rigid event with paper as

rigid parameter . event [cast_paper] refines cast_ballot
*Rigid: the guard any [paper] where
@valid-paper: paper € valid_papers

cannot be strengthened

// actions for casting a ballot
end



Second Refinement: Time

& Availability

This theorem ensures
that a ballot paper is
considered valid only if:

— Paper time has not
expired

— Voter has not cast their
vote before

— The paper is not spoiled

— Issued by a legitimate
source
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theorem @accept-valid-paper:

V paper - paper € valid_papers =

// paper not already expired
paper_time(paper) 2 current_time -
expiry_duration

// copy not already cast

A paper_voter(paper) &
paper_voter[cast_papers]

// copy not already spoiled

A (V sp * sp € spoiled_papers =
paper_voter(paper) # paper_voter(sp)
V paper_vote(paper) # paper_vote(sp)
V paper_time(paper) # paper_time(sp)
)
// paper is not illegitimate

A paper & illegitimate_papers
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Third Refinement: Ballot Encryption

« Introduce encryption to
prevent SBB from accessing
the voter’s information.

— Apply data refinement to
replace and

with encrypted
ballot

theorem @accept-valid-paper:

V paper - paper € valid_papers =
paper_time(paper) = current_time -
expiry_duration

// copy not already cast

A paper_encrypted_ballot(paper) &
paper_encrypted_ballot[cast_papers]
// copy not already spoiled

A (Vsp - sp € spoiled_papers =
paper_encrypted_ballot(paper) #
paper_encrypted_ballot(sp) V
paper_time(paper) # paper_time(sp)
)

A paper € illegitimate_papers
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Fourth Refinement: Ballot Authentication

« Introduce MAC to check the legitimacy of the source issuing
the ballot.

— We assume the attacker does not know the secret key;
therefore, it is crucial to ensure the secrecy of this key.

@mac-legitimate_papers: Vpaper - paper € legitimate_papers =
paper_mac(paper) = MACAIlgorithm(

paper_time(paper) — paper_encrypted_ballot(paper) » MACKey
)

 All proofs are automatically proved with the help of SMT-
Solver plugin

15



IIIIIIIIIIII

Part 2: Translating
Event-B to SPARK-
Ada
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Introduction
e Whatis SPARK?

— A programming language based on a subset of the Ada
language,

— Targeted at functional specification and static verification.

— A set of development and verification tools for that language.

/ Ada Core
features language G L GLEL

[ : constructs
\ the SPARK common to sl
GEELD o

.

VUbset

-
-
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*AdaCore: Introduction to SPARK



From Event-B to SPARK

machine m
sees C
variables

invariants

events
event
INITIALISATION
then
@actl: ...
end
event evt
any
parameters
where
@grd1: ..
then
@actl: ...
end
end

context C
sets

constants
records
record T
A : Integer
B : Integer

axioms

end
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package P
with SPARK Mode =>0On
is

Some_Global : G;

type T is record

A : Integer;

B : Integer 15
end record;
begin
function F(X :) oo 3
return .. end Proc;
end P;

package body P
with SPARK Mode =>0On

procedure Proc (X :in T) is

procedure Proc (X :in T)

with

Global => (Input => (..),
00 ),

Pre => ..,

Post => .. ;

end P;
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Refinement towards Implementation

e Sets - arrays

— Data Refine a set to Total function from Integer range to the
set type

— Can introduce a counter variable to track the size of array

« Event-B records are more general than SPARK (Event-B records
supports optional and relational fields)

— Use only total functions

— Define a special null record element to reflect Event-B
optional possibility and it can be used for initialisations
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High level Event-B Transformation

e Event-B Models Translation

— Each context = specification package using all extended context
packages

— Last Refined Machine - specification and body packages using all
context and extended contexts packages

« Machine Elements Translation

— Variables - Global variables, initialised according to the
INITTALISATION event actions

— Event / INITIALISATION - Procedures
— Event Guards - Pre-conditions
— Event Actions - Post-conditions

— Event Parameters - Procedure Parameters (Output, input, in out
depends on guards and actions)

20



UNIVERSITY OF

Southampton
Smart Ballot Example

procedure cast(paper : in barcode) with
Global => (Proof_In => ( spoiled_arr,
curr_time, spoil_count),

In_Out => (cast_arr, cast_count)),

event cast_paper
refines cast_paper

any Pre => cast_count in 0 .. Max_Votes-1),
paper and then not already_ cast(paper)
where

@grd1: paper € BARCODE

Post => already_ cast(paper)
@grd2: cast_count €0 - = max_votes -1

and then cast_count = cast_count' old + 1);

then . .
@act1: cast_arr(cast_count):= paper procedure cast(paper : in barcode) is

@act2: cast_count := cast_count + 1 begin
end cast_arr(cast_count) := paper;

cast_count := cast_count + 1;
end cast;
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Transformation Issues

« What do we prove at SPARK level?

— Not necessarily all system invariants need to be re-
proved in SPARK (already proved in Event-B)

— Need to prove Ada is a correct implementation of the
Event-B model

« Some invariants might be required (e.g., well
definedness)
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Conclusions

e The SBB Event-B model

— Modelled different security properties: Availability,
confidentiality & integrity

— Showed how we applied a refinement-based approach to
model security properties

e Manual Transformation of Event-B Models to SPARK

o Identification of Translation Patterns

— Applied to SBB & Tokeneer
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Future Work

« What additional assertions are needed at SPARK level
(invariants)

o Automatic Code Generation

— Define a SPARK EMF Metamodel using XSD schema
generated by GNAT

— Event-B EMF to SPARK EMF Transformation
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Thank you
Questions?



