
Event-B Development of a
Smart Ballot Box

Dana Dghaym

1
HD-Sec Workshop, 16th September 2021

Outline
• Part 1 : Event-B development of a smart ballot box

– Case study: Smart Ballot Box
– Aims & Motivation
– Event-B System Model of a Smart Ballot Box (SBB)

• Part 2 : Event-B to SPARK-Ada

– Introduction to SPARK
– High-Level Transformation Patterns : SBB Example
– Transformation Issues

• Conclusions and Future Work
2

Case Study: Smart Ballot Box
• Key Function of SBB:

– Ensures only valid ballot
papers are cast in ballot
boxes for later tabulation.

• Why the SBB?

– Security Properties:
Confidentiality, integrity
and availability.

– Relatively Small Case Study
– Can be used as

Demonstrator

3

Galois and Free & Fair. The BESSPIN
Voting System (2019).

Motivation
• Application of refinement-based formal modelling in

building a Correct-by-Construction secure system.

• Refinement of the security properties of a system.

• Overall Aim of case study:

– Show how the Smart Ballot Box can be correctly
implemented on capability hardware according to the
system-level security specification.

• Develop a tool-supported approach to translate an Event-B
model to verified code.

4

SBB System Model: Refinement Strategy
0. Abstract level: Model an ideal voting system.

1. Model possible attackers' behavior by distinguishing
between different types of ballot papers.

2. Introduce time and invalidate ballots with expired
timestamps.

o Time can be the subject of more attacks.

3. Data refine the voter information by encrypting ballots.

4. Ensure the legitimacy of ballots through the Message
Authentication Code (MAC).

9

SBB Model: Abstract Level
• Events: create_ballot, cast ballot, invalidate_ballot

• Model an ideal voting system

– Each voter can have at most one legitimate ballot

– The cast ballots must be legitimate

10

ballots ∈ VOTER ⇸ VOTE

cast ⊆ ballots

First Refinement: Ballot types

• Possible attacks

– Attacker create ballot/duplicate valid ballot ..

• Model the main security properties of SBB

1. Accept all valid ballots
2. Reject invalid ballots

First Refinement: Availability Property
• Availability property: Ensure valid ballots are not

blocked from being cast.

• Availability property is captured by the guard of
the relevant events.

– Specify cast_paper as rigid event with paper as
rigid parameter .
*Rigid: the guard
cannot be strengthened

event [cast_paper] refines cast_ballot
any [paper] where

@valid-paper: paper ∈ valid_papers
then
// actions for casting a ballot
end

Second Refinement: Time
& Availability

13

theorem @accept-valid-paper:
∀ paper · paper ∈ valid_papers ⇒
// paper not already expired
paper_time(paper) ≥ current_time −

expiry_duration
// copy not already cast
∧ paper_voter(paper) ∉
paper_voter[cast_papers]
// copy not already spoiled
∧ (∀ sp · sp ∈ spoiled_papers ⇒
paper_voter(paper) ≠ paper_voter(sp)
∨ paper_vote(paper) ≠ paper_vote(sp)
∨ paper_time(paper) ≠ paper_time(sp)
)
// paper is not illegitimate
∧ paper ∉ illegitimate_papers

• This theorem ensures
that a ballot paper is
considered valid only if:

– Paper time has not
expired

– Voter has not cast their
vote before

– The paper is not spoiled
– Issued by a legitimate

source

Third Refinement: Ballot Encryption

• Introduce encryption to
prevent SBB from accessing
the voter’s information.

– Apply data refinement to
replace paper_voter and
paper_vote with encrypted
ballot

14

theorem @accept-valid-paper:
∀ paper · paper ∈ valid_papers ⇒
paper_time(paper) ≥ current_time −

expiry_duration
// copy not already cast
∧ paper_encrypted_ballot(paper) ∉
paper_encrypted_ballot[cast_papers]
// copy not already spoiled
∧ (∀sp · sp ∈ spoiled_papers ⇒
paper_encrypted_ballot(paper) ≠
paper_encrypted_ballot(sp) ∨
paper_time(paper) ≠ paper_time(sp)
)
∧ paper ∉ illegitimate_papers

Fourth Refinement: Ballot Authentication
• Introduce MAC to check the legitimacy of the source issuing

the ballot.

– We assume the attacker does not know the secret key;
therefore, it is crucial to ensure the secrecy of this key.

15

@mac-legitimate_papers: ∀paper · paper ∈ legitimate_papers ⇒
paper_mac(paper) = MACAlgorithm(
paper_time(paper) ↦ paper_encrypted_ballot(paper) ↦ MACKey
)

• All proofs are automatically proved with the help of SMT-
Solver plugin

Part 2: Translating
Event-B to SPARK-

Ada

Introduction
• What is SPARK?

– A programming language based on a subset of the Ada
language,

– Targeted at functional specification and static verification.
– A set of development and verification tools for that language.

17
*AdaCore: Introduction to SPARK

From Event-B to SPARK

18

package P
with SPARK_Mode => On
is
Some_Global : G;
type T is record

…
A : Integer;
B : Integer

end record;

function F(X :)
return ..

…
;
procedure Proc (X : in T)
with
Global => (Input => (..),

…),
Pre => .. ,
Post => .. ;
end P;

package body P
with SPARK_Mode => On
is
procedure Proc (X : in T) is
begin

… ;
end Proc;
end P;

machine m
sees C
variables
…
invariants
…
events

event
INITIALISATION

then
@act1: …

end
event evt

any
parameters

where
@grd1: ..

then
@act1: …

end
end

context C
sets
…
constants
…
records

record T
A : Integer
B : Integer

…
axioms
….
end

Refinement towards Implementation
• Sets à arrays

– Data Refine a set to Total function from Integer range to the
set type

– Can introduce a counter variable to track the size of array

• Event-B records are more general than SPARK (Event-B records
supports optional and relational fields)

– Use only total functions
– Define a special null record element to reflect Event-B

optional possibility and it can be used for initialisations

19

High level Event-B Transformation
• Event-B Models Translation

– Each context à specification package using all extended context
packages

– Last Refined Machine à specification and body packages using all
context and extended contexts packages

• Machine Elements Translation
– Variables à Global variables, initialised according to the

INITIALISATION event actions
– Event / INITIALISATION à Procedures
– Event Guards à Pre-conditions
– Event Actions à Post-conditions
– Event Parameters à Procedure Parameters (Output, input, in out

depends on guards and actions)

20

Smart Ballot Example

22

event cast_paper
refines cast_paper
any
paper
where
@grd1: paper ∈ BARCODE
@grd2: cast_count ∈ 0‥max_votes −1

….
then
@act1: cast_arr(cast_count)≔ paper
@act2: cast_count ≔ cast_count + 1
end

procedure cast(paper : in barcode) with
Global => (Proof_In => (spoiled_arr,

curr_time, spoil_count),
In_Out => (cast_arr, cast_count)),
Pre => cast_count in 0 .. Max_Votes-1),

and then not already_cast(paper)
…

Post => already_cast(paper)
and then cast_count = cast_count' old + 1);

procedure cast(paper : in barcode) is
begin

cast_arr(cast_count) := paper;
cast_count := cast_count + 1;

end cast;

Transformation Issues
• What do we prove at SPARK level?

– Not necessarily all system invariants need to be re-
proved in SPARK (already proved in Event-B)

– Need to prove Ada is a correct implementation of the
Event-B model

• Some invariants might be required (e.g., well
definedness)

23

Conclusions
• The SBB Event-B model

– Modelled different security properties: Availability,
confidentiality & integrity

– Showed how we applied a refinement-based approach to
model security properties

• Manual Transformation of Event-B Models to SPARK

• Identification of Translation Patterns

– Applied to SBB & Tokeneer

26

Future Work
• What additional assertions are needed at SPARK level

(invariants)

• Automatic Code Generation

– Define a SPARK EMF Metamodel using XSD schema
generated by GNAT

– Event-B EMF to SPARK EMF Transformation

27

Thank you
Questions?

28

