

Generating SPARK from Event-B

Providing Fundamental Safety and Security

Asieh Salehi, Thai Son Hoang, Dana Dghaym, Michael Butler and Colin Snook

Outline of talk

• Background
• Event-B, CamilleX & Event-B notation extensions (including Records)
• Spark

• Overview -
• why generate SPARK from Event-B
• From abstract record structures to SPARK

• SPARK code generation
• Overview of translation rules (inc. records)

• SBB Electronic Voting Case study
• using latest CamilleX and Records
• SBB final refinement -> SPARK specifications

3

Background - Event-B

• Discrete transition systems
• Variables representing states
• Guarded events representing transitions
• Contexts: Static part of the models (carrier sets, constants, etc.)
• Machines: Dynamic part of the models (variables, events, etc.)

• First-order logic with set theory

• Refinement
• Start with a simple abstract model
• Add detail and design in small steps

• Verification by automatic theorem provers
• Validation by model checking
• Model checker also useful for liveness and debugging

The Need for Textual Representation

• (True) Textual representation helps with teamworking

• Framework (e.g., XText) for developing IDE for DSLs.

• Design Principles:
1. Reuse the existing Event-B tools of Rodin as much as possible.

2. Support direct extension of the Event-B syntax to provide additional features.

3. Provide compatibility with other kinds of ‘higher-level’ models that contribute to the overall model, e.g.,
UML-B diagrams.

• We make use of the Event-B EMF and EMF-2-EMF framework

The CamilleX Framework

The CamilleX Framework

SPARK
code

record A:
A1

record B:
[A1] B1

Context Cntx00

record D:
[C1] D1

Context Cntx01

in
he

rit
s

extends

record E:
[A1] e1

record F:
[A1] (e1) f1

Machine Mch00

sees

in
he

rit
s

inherits

in
he

rit
s

record C:
C1

context Cntx00
record A

A1: type_A1
end
record B inherits A

B1: type_B1
end
record C

C1: type_C1
end

context Cntx01
extends Cntx00
record D inherits C

D1: type_D1
end

machine Mch00
sees Cntx00
record E inherits A

e1: type_e1
end
record F inherits E

f1: type_f1
end

record B:
B1

record A:
A1

Context Cntx10

record B:
[B1] B2

Context Cntx11

record A:
[A1] a2

Machine Mch10

Machine Mch11

refines

extends

record A:
[A1] (a2)

ex
te
nd

s

extends

sees

record D:
d1 d2

record D:
d1 d3

sees

re
fin

es

ex
te
nd

s

context Cntx10
record A

A1: type_A1
end
record B

B1: type_B1
end

machine Mch10
sees Cntx10
records
extended record A

a2: type_a2
record D

d1: type_d1
d2: type_d2

context Cntx11
extends Cntx10
extended record B

B2: type_B2
end

machine Mch11
refines Mch10
sees C1
extended record A
refined record D

d1
d3: type_d3

constraint
@gluing_inv:

*relation specification
between d2 and d3*

end

Records – an important extension to Event-B

• Inherits
• Subtyping records
• Implicit fields

• Refines
• Replacing fields
• Adding fields

• Extends
• (Only) Adding fields

• Constraints
• Properties of record

instances

Ongoing research :
decomposition of records to
prepare for translation to
SPARK records

9

Background - SPARK

• Subset of Ada programming language

• Assertions, pre-conditions, post-conditions

• Targeted at highly reliable software

• Formal verification to prove the absence of runtime errors:

– arithmetic overflow, buffer overflow and division-by-zero.

• Applied over many years

– e.g. aircraft systems, control systems and rail systems.

Motivation

• Abstraction to isolate important properties
• Refinement to add detail and design
• Resulting in Validated and Verified models

• …But how can we ensure the code complies with the models

• Answer: generate Spark outline code
• With pre/post-conditions that match events of the model
• Assertions for run time checking

Steps : From abstract concept to Spark Implementation

• Abstract model of concept
• Refinements that introduce more detailed requirements
• Refinements that introduce design decisions
• Decomposition … Controller + Environment
• Refine Controller to prepare for code generation
• Generate SPARK from Controller

Overview of Event-B to SPARK Translation Rules

• Component Translation
• (All) Context à specification package

• Context extends à context packages use (and all extended context packages)
• (Last) Refined Machine à specification and body packages

• Machine sees context à use contexts packages (and all extended context packages)

Overview of Event-B to SPARK Translation Rules

• Constant Translation
• Non function constants à constant, type depends on the axiom definitions

• Function type constant à function with return type depending on the range of
the function and the function parameters are the domain of the Event-B function.

Overview of Event-B to SPARK Translation Rules

• Variable Translation
• Variable à Global variable,

• initialised according to the INITIALISATION event actions

• Record Translation
• CamilleX Record à SPARK record

• with all Event-B record fields (direct and implicit)

Overview of Event-B to SPARK Translation Rules

• Event Translation
• Event à Procedure (except Initialisation)

• Event Guard à Pre-condition
• Event Action à Post-condition & Procedure body
• Event Parameter à Procedure Parameter

• (where output/input/in_out is deduced from guards and actions)

• Note that we have already proved invariants in the Event-B.. No need to
translate invariants to SPARK
• Or is there! Some industrial partners have suggested that it may still be useful..

E.g. to catch problems caused by interrupts.

Refinement of SBB example
From abstract concept to spark

• Ballot

• Paper (voter,vote)

• Paper (voter,vote,time)

• Paper (voter,vote,time,encrypted)

• Paper (voter,vote,time,encrypted, mac)

• Decompose -> smart ballot box + voters/attackers

• Refine SBB data towards arrays etc.

• Generate SPARK for SBB

Abstract notion of a ballot as a mapping from voters to vote
We only consider ideal situation of valid votes

Refinement of SBB example
From abstract concept to spark

• Ballot
• Paper (voter,vote)
• Paper (voter,vote,time)
• Paper (voter,vote,time,encrypted)
• Paper (voter,vote,time,encrypted, mac)
• Decompose -> smart ballot box + voters/attackers
• Refine SBB data towards arrays etc.
• Generate SPARK for SBB

Replace ballet with its physical representation :
Paper - fields for voter and vote

This introduces the possibility of invalid papers.. Copying
faking etc.

Refinement of SBB example
From abstract concept to spark

• Ballot

• Paper (voter,vote)

• Paper (voter,vote,time)

• Paper (voter,vote,time,encrypted)

• Paper (voter,vote,time,encrypted, mac)

• Decompose -> smart ballot box + voters/attackers

• Refine SBB data towards arrays etc.

• Generate SPARK for SBB

Introduce new field : time

Voting papers can expire,
Reduces opportunity for validity threats

Refinement of SBB example
From abstract concept to spark

• Ballot
• Paper (voter,vote)
• Paper (voter,vote,time)
• Paper (voter,vote,time,encrypted)
• Paper (voter,vote,time,encrypted, mac)
• Decompose -> smart ballot box + voters/attackers
• Refine SBB data towards arrays etc.
• Generate SPARK for SBB

Refine voter,vote with encrypted.

Provide confidentiality

Refinement of SBB example
From abstract concept to spark

• Ballot
• Paper (voter,vote)
• Paper (voter,vote,time)
• Paper (voter,vote,time,encrypted)
• Paper (voter,vote,time,encrypted, mac)
• Decompose -> smart ballot box + voters/attackers
• Refine SBB data towards arrays etc.
• Generate SPARK for SBB

Introduce mac (algorithm for hashing)

Enables checking validity of vote..
E.g. if an attacker tries to alter the vote

Refinement of SBB example
From abstract concept to spark

• Ballot
• Paper (voter,vote)
• Paper (voter,vote,time)
• Paper (voter,vote,time,encrypted)
• Paper (voter,vote,time,encrypted, mac)
• Decompose -> smart ballot box + voters/attackers
• Refine SBB data towards arrays etc.
• Generate SPARK for SBB

• Event-B model is a closed system
• Some parts of model are the controller
• Others the environment being controlled

Future work - How to decompose records sets e.g.
only cast_papers are in the SBB system

Refinement of SBB example
From abstract concept to spark

• Ballot
• Paper (voter,vote)
• Paper (voter,vote,time)
• Paper (voter,vote,time,encrypted)
• Paper (voter,vote,time,encrypted, mac)
• Decompose -> smart ballot box + voters/attackers
• Refine SBB data towards arrays etc.
• Generate SPARK for SBB

• Data Refinement from abstract SET into Array
• Array can be modelled as a Total function from 0..n to set

• Event-B records can have optional fields SPARK we can only use total
functions -
• Define a null value for optional field so that all records are total

Refinement of SBB example
From abstract concept to spark

• Ballot
• Paper (voter,vote)
• Paper (voter,vote,time)
• Paper (voter,vote,time,encrypted)
• Paper (voter,vote,time,encrypted, mac)
• Decompose -> smart ballot box + voters/attackers
• Refine SBB data towards arrays etc.
• Generate SPARK for SBB

Example: Application to Smart Ballot Box Model

event cast_paper
refines cast_paper
any
paper
where
@grd1: paper ∈ BARCODE
@grd2: cast_count ∈ 0 ‥max_votes −1

….
then
@act1: cast_arr(cast_count)≔ paper
@act2: cast_count ≔ cast_count + 1
end

procedure cast(paper : in barcode) with
Global => (Proof_In => (spoiled_arr, curr_time, spoil_count),
In_Out => (cast_arr, cast_count)),
Pre => cast_count in 0 .. Max_Votes-1),

and then not already_cast(paper)
…

Post => already_cast(paper)
and then cast_count = cast_count' old + 1);

procedure cast(paper : in barcode) is
begin

cast_arr(cast_count) := paper;
cast_count := cast_count + 1;

end cast;

QUESTIONS?

papers:
voter vote

legitimate:
(voter vote)

papers:
(voter vote) time

illegitimate :
(voter vote) (time)

Machine m1 Machine m2

inherits

inherits

extends

extends

papers:
time encrypted_ballot

illegitimate:
(time encrypted_ballot)

inherits

refines

extends

Machine m3

illegitimate:
(voter vote)

inherits

legitimate:
(voter vote) (time)

legitimate:
(time encrypted_ballot)

inherits

extends

inherits

extends

valid:
(voter vote)

invalid:
(voter vote)

cast:
(voter vote)

spoiled:
(voter vote)

valid:
(voter vote) (time)

invalid:
(voter vote) (time)

cast:
(voter vote) (time)

spoiled:
(voter vote) (time)

valid:
(time encrypted_ballot)

invalid:
(time encrypted_ballot)

cast:
(time encrypted_ballot)

spoiled:
(time encrypted_ballot)

extends

extends

extends

extends

extends

extends

extends

extends

inherits

Case Study – SBB Electronic Voting

