
Verifying System-level
Security of a Smart Ballot
Box
Dana Dghaym, Thai Son Hoang, Michael
Butler, Runshan Hu, Leonardo Aniello and
Vladimiro Sassone

1
ABZ 2021 - virtual, 9th June 2021

Outline
• Motivation

• Case study: Smart Ballot Box

• Rigid Events and Parameters

– Preserving availability property during refinement

• Event-B System Model of the Smart Ballot Box

• Conclusions and Future Work

2

Motivation
• Application of refinement-based formal modelling in

building a Correct-by-Construction secure system.

• Refinement of the availability property of secure systems.

• Overall Aim of case study: show how the Smart Ballot Box
can be correctly implemented on capability hardware
according to the system-level security specification.

3

Case Study: Smart Ballot Box
• Key Function of SBB:

– Ensures only valid ballot
papers are cast in ballot
boxes for later
tabulation.

• Security Properties:

– Confidentiality, integrity
and availability.

4

Galois and Free & Fair. The BESSPIN
Voting System (2019).

Rigid Events and Parameters
• Event availability in Event-B

– Determined by its enabledness condition .
– Guard strengthening can affect event availability during

refinement.

• Extend the notion of event enabledness to include
parameters, given event e we define enabledness:

• We call events we are interested in their availability with
respect to p rigid events & p are the rigid parameters. 5

Enabledp(e) ≝ ∃ q . G(p, q)
event e
any p, q
where G(p,q)
then ... end

Rigid Events and Parameters (2)
• Textual Representation: Event e must be enabled for any

parameter rp satisfying Enabledrp(e)

• Syntactic Rules:

1. Rigid events can only be refined by rigid events
2. The abstract rigid parameters must be retained in the

concrete events

• In general, more rigid parameters can be introduced in later
refinements, but they will only be relevant to proof in
further refinements. 6

event [e]
any [rp] op where Ga(rp, op) then…end

Preserving Availability through Refinement
• Preserve availability property through refinement by:

– Proving that the concrete event does not strengthen the
enabledness of the abstract event, we propose
enabledness PO: ENBL

7

I(v), J(v, w), Ga(rp, oap, v) ⊢ ∃ ocp . Gc(rp, ocp, v, w)

event [ae]
any [rp] oap
where Ga(rp, oap, v)
then
// abstract actions
end

event [ce]
any [rp] ocp
where Gc(rp, ocp, v, w)
then
// concrete ac-ons
end

Preserving Availability (2)
• In Event-B an abstract event can be refined by a group of

concrete events cei (i ∈ 1..n) .

• ENBL PO can be generalized as follows where ocpi and
Gci are the concrete events and guards of cei

8

∀ rp, oap . Ga(rp, oap) ⇒⋁i (∃ ocpi . Gci(rp, ocpi))

SBB System Model: Refinement Strategy
0. Abstract level: Model an ideal voting system.

1. Model possible attackers' behavior by distinguishing
between different types of ballot papers.

2. Introduce time and invalidate ballots with expired
timestamps.

o Time can be the subject of more attacks.

3. Data refine the voter information by encrypting ballots.

4. Ensure the legitimacy of ballots through the Message
Authentication Code (MAC).

9

SBB Model: Abstract Level
• Events: create_ballot, cast ballot, invalidate_ballot

• Model an ideal voting system

– Each voter can have at most one legitimate ballot

– The cast ballots must be legitimate

10

ballots ∈ VOTER ⇸ VOTE

cast ⊆ ballots

First Refinement: Ballot types

• Possible attacks

– Attacker create ballot/duplicate valid ballot ..

• Model the main security properties of SBB

1. Accept all valid ballots
2. Reject invalid ballots

First Refinement: Availability Property
• Availability property: Ensure valid ballots are not

blocked from being cast.

• Availability property is captured by the guard of
the relevant events.

– Specify cast_paper as rigid event with paper as
rigid parameter . event [cast_paper] refines cast_ballot

any [paper] where
@valid-paper: paper ∈ valid_papers

then
// actions for casting a ballot
end

Second Refinement: Time
& Availability Encoding ENBL PO

as a theorem

13

theorem @accept-valid-paper:
∀ paper · paper ∈ valid_papers ⇒
// paper not already expired
paper_time(paper) ≥ current_time −

expiry_duration
// copy not already cast
∧ paper_voter(paper) ∉
paper_voter[cast_papers]
// copy not already spoiled
∧ (∀ sp · sp ∈ spoiled_papers ⇒
paper_voter(paper) ≠ paper_voter(sp)
∨ paper_vote(paper) ≠ paper_vote(sp)
∨ paper_time(paper) ≠ paper_time(sp)
)
// paper is not illegitimate
∧ paper ∉ illegitimate_papers

event cast_paper refines cast_paper
any paper where
@typeof-paper: paper ∈ papers
// paper not already expired
// copy not already cast
// copy not already spoiled
// paper is not illegitimate
then
// cast the paper actions
end

Third Refinement: Ballot Encryption
• Introduce encryption to

prevent SBB from accessing the
voter’s information.

– Apply data refinement to
replace paper_voter and
paper_vote with encrypted
ballot

• Prove ENBL PO due to
cast_paper guards update as a
result of refinement.

14

theorem @accept-valid-paper:
∀ paper · paper ∈ valid_papers ⇒
paper_time(paper) ≥ current_time −

expiry_duration
// copy not already cast
∧ paper_encrypted_ballot(paper) ∉
paper_encrypted_ballot[cast_papers]
// copy not already spoiled
∧ (∀sp · sp ∈ spoiled_papers ⇒
paper_encrypted_ballot(paper) ≠
paper_encrypted_ballot(sp) ∨
paper_time(paper) ≠ paper_time(sp)
)
∧ paper ∉ illegitimate_papers

Fourth Refinement: Ballot Authentication
• Introduce MAC to check the legitimacy of the source issuing

the ballot.

– We assume the attacker does not know the secret key;
therefore, it is crucial to ensure the secrecy of this key.

15

@mac-legitimate_papers: ∀paper · paper ∈ legitimate_papers ⇒
paper_mac(paper) = MACAlgorithm(
paper_time(paper) ↦ paper_encrypted_ballot(paper) ↦ MACKey
)

• The guards of cast_paper and The ENBL PO will be
updated accordingly.

Conclusions and Future Work
• Availability property of an event can be ensured through

refinement by preserving the enabledness of its
corresponding refined events.

– A general PO (ENBL) that can be applied to any event
with rigid parameters is provided.

• Future Work

– Semantics model to justify the soundness of the rigid
property of events

– Tool support for the ENBL PO in Rodin: CamilleX

16

Thank you
Questions?
This work is supported by the HD-Sec project, which was funded by the
Digital Security by Design (DSbD) Programme delivered by UKRI to
support the DSbD ecosystem.

17

Visit https://hd-sec.github.io for more
information on the HD-Sec project.

https://hd-sec.github.io/

